HUDSON RIVER PCBs REASSESSMENT RI/FS PHASE 3 REPORT: FEASIBILITY STUDY

LIST OF FIGURES CHAPTER 3

- 3-1 Features of Interest in the Upper Hudson Vicinity
- 3-2 Location of 1996 and 1997 GE Float Survey Samples
- 3-3 GE Float Survey Results for the TI Pool
- 3-4 Principal Component 1 versus Principal Component 2 and MDPR versus Delta MW for GE Float Survey Data
- 3-5 Effective Rogers Island Concentration on Mixing Curve
- 3-6 Cohesive Sediment Area and Central Channel Total PCBs as a Function of River Mile
- 3-7 1999 Coring Results in Hot Spot 14
- 3-8 Erosion Area in TI Pool as Identified by Side Scan Sonar
- 3-9 Length Weighted Average Concentration and Mass per Unit Area Calculations
- 3-10 Correlations Among PCB Metrics for 1984 NYSDEC Sediment Survey
- 3-11 Correlations Among PCB Metrics for USEPA Low Resolution Sediment Coring Survey
- 3-12 Relationship among MPA, PCB Mass and Sediment Area in TI Pool (based on 1984 sediment survey)
- 3-13 Relationship among MPA, PCB Mass and Sediment Area in the Cohesive Area in the TI Pool (based on 1984 sediment survey)
- 3-14 Relationship among MPA, PCB Mass and Sediment Area in the Non-cohesive Area in the TI Pool (based on 1984 sediment survey)
- 3-15 Selection of Remediation Areas for Expanded Hot Spot Removal: *Hot Spot 8*
- 3-16 Selection of Remediation Areas for Expanded Hot Spot Removal: Hot Spot 14
- 3-17 Selection of Remediation Areas for Expanded Hot Spot Removal: *Hot Spot 28*
- 3-18 Selection of Remediation Areas for Expanded Hot Spot Removal: RM 183.25 184.25
- 3-19 Selection of Remediation Areas for Expanded Hot Spot Removal: Hot Spot 36
- 3-20 Selection of Remediation Areas for Hot Spot Removal: Hot Spot 8
- 3-21 Selection of Remediation Areas for Hot Spot Removal: Hot Spot 14
- 3-22 Assessment of the Capture Efficiency for the Expanded Hot Spot Remediation Tri+ PCB Concentration and MPA Histograms for 1984 NYSDEC Data Within and Outside of Remedial Area
- 3-23 Assessment of the Capture Efficiency for the Hot Spot Remediation Tri+ PCB Concentration and MPA Histograms for 1984 NYSDEC Data Within and Outside of Remedial Area

Figure 3-3 GE Float Survey Results for the TI Pool

Figure 3-4
Principal Component 1 versus Principal Component 2
and MDPR versus **D**MW for GE Float Survay Data

Figure 3-5
Effective Rogers Island Concentration on Mixing Curve

Figure 3-6
Cohesive Sediment Area and Central Channel Total PCBs as a Function of River Mile

TAMS

Figure 3-7
1999 Coring Results in Hot Spot 14

Figure 3-9 Length Weighted Average Concentration and Mass per Unit Area Calculations

Length Weighted Average Concentration:

567 μg/g

75 cm

Total Mass per Unit Area in Core: 244 g/m²

Figure 3-10 Correlations Among PCB Metrics for 1984 NYSDEC Sediment Survey

Figure 3-11
Correlations Among PCB Metrics for USEPA Low Resolution
Sediment Coring Survey

Figure 3-12
Relationship among MPA, PCB Mass and Sediment Area in TI Pool (based on 1984 sediment survey)

Figure 3-13
Relationship among MPA, PCB Mass and Sediment Area in the Cohesive Area in the TI Pool (based on 1984 sediment survey)

Figure 3-14
Relationship among MPA, PCB Mass and Sediment Area in the Non-cohesive Area in the TI Pool (based on 1984 sediment survey)

